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ABSTRACT

The objective of the thesis was to determine the effects of equivalence ratio (¢)
and fuel composition on the infrared signature of solid fueled ramjets (SFRJ). Solid
fuels investigated were Plexiglas, HTPB, and HTPB with aluminum, silicon, boron
carbide, and/or magnesium. They were tested at chamber pressures of 80-170 psia
and with equivalence ratios between 0.3 and 1.4. With the plume emissivity set to
1.0, plume irradiance was found to increase approximately with the second power of
the actual combustor stagnation temperature. In addition to providing needed plume
signature data for the SFRJ, this information can be used to validate numerical
predictions from the SPF (Standardized Plume Flowfield) and SIRRM (Standardized
Infrared Radiation Model) computer codes, which are used to predict the plume

infrared signature.
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" I. INTRODUCTION

A. BACKGROUND

As the air-breathing missile's speed increases above Mach 2.5, the
advantages of ramjet propulsion in specific fuel consumption (SFC) and
specific impulse (Isp) make it the optimum propulsion choice (Figure 1).
The solid fueled ramjet also offers a "low cost, self-throttling, simple
design that is well suited for a high-g environment” [Ref. 1l:p. 186]. 1Its
major disadvantages include a "possible lower combustion efficiency,
performance dependent upon altitude and speed, required aft mixing
chamber, fuel exposed to booster pressures, and the need for the air
inlets to be more forward than for liquid fueled ramjets or turbojets”
[Ref. l:p. 186]. To track and counter this high speed missile, all means
available including, infrared, radar, and other electronic emissions must
be considered. From an offensive standpoint, it is desirable to maintain
the missiles signature as small as possible to prevent detection.

The two performance criteria mentioned earlier are obtained for ideal

nozzle expansion by,

F = mu, - mu, = B[ (1+£)u,-u, )
SFC = m,/F

Isp = F/m.q,

It is important to note that ramjet "performance depends upon both the
fuel-air ratio and flight conditions” [Ref. 2:p. 185]. For performance
evaluations between various engines, the flight condition variables should
be excluded. As discussed in Reference 2, this can be done by using a
"static thrust”", F,6 = 55(1+f)u,, to calculate a static specific impulse,

Isp,. It can be shown that Isp, is directly proportional to the heat




PERFORMANCE COMPARISONS FOR DIFFERENT
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PIGURE 1l: Performance Comparisons for Different Propulsion Devices.
Adapted from [Ref. 3:p. 139-154)

released per unit mass of fuel. By adding certain metals (such as
aluminum, boron, magnesium, silicon, and/or metal hydrides of these
elements) to the fuel, the heat of combustion per unit mass and unit
volume can be increased (Figure 2). Beryllium is very toxic and not
recommended as a fuel additive. The heat of combustion is directly
related to the heat added to the system. This will allow for a higher
transfer of energy per unit mass of fuel to the ramjet gases, thus
improving the Isp and decreasing the SFC. {Ref. 2:pp. 158-162] However,
this additional heat will cause the temperature in the ramjet combustor

and plume to increase, thus increasing the infrared signature. The
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Volume. [Ref. 2:p. 161])

increased plume signature may negate much of the benefits of the
performance gain obtained by the use of metal fuels. The magnitude of the
increase in plume IR signature needs to be determined. Therefore, there
is a strong need to both measure and effectively model the effects of
metal additives on the infrared signature of ramjet powered missiles.
The plume infrared signature depends upon the plume temperature,
optical properties of the gases and particles and the missile location and
speed of motion. There are three basic categories of infrared signals, 1)
spectral, 2) temporal, 3) spatial. Spectral refers to the wavelength

dependence of the radiation. Temporal refers to the time varying nature




of the radiation and usually is effected by the scurce’s motion. sSpatial
distribution depends on the viewed aspect of the source and usually
remains constant at long distances. In this atudy, the primary interest
was in the spectral emission. [Ref. S:p. 57)

There are two basic types of emitters in the plume, solid bodies and
gases. Unlike visible light, which is dependeﬁt upon the reflected
wavelength, solid body infrared signals come mostly from emission (emitter
temperature dependent) vice reflection. Solid components usually have a
continuous power distribution across the wavelength spectrum and are

referred to as continuum radiators (Figure 3). Gas radiation, however,

o
]
L ]
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*EARTH @ 300°K
*JET ENGINE TAR
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r

SPECTRAL RADIANT EMITTANCE, WATTS/CM?/um
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T

o o1 10 0 100 1000
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PIGURE 3: Spectral Radiant Emittance
From a Black Body. [Ref. 4:p. 385]

depends upon both emission and scattering and tends to produce signals in
discrete small bands across the spectrum. They are referred to as line
radiators or emitters. [Ref. 4:pp. 382-389) The scattering of

electromagnetic radiation by particles is generally divided into three




regions. Rayleigh scattering occurs when the particle size is small with
respect to the wavelength of the illuminating beam. 1In this case, the
photon flux is proportional to 1/A%,

Mie scattering occurs when the particle size is approximately the same
as the wavelength and the refractive index is significantly different from
that of the scattering medium. This type of scattering can be used for
modeling water droplets and plume particles. When particles become
significantly larger than the wavelength of the illuminating beam, Mie
scattering becomes indistinguishable from Fraunhofer diffraction.

(Ref. 5:pp. 101-103]

The infrared signature of a missile comes primarily from hot parts on
the airframe or propulsion system, reflected solar radiation, and
radiation from the propulsion or plume gases and/or particles. Airframe
heating becomes significant for supersonic missiles and primarily consists
of emissions with wavelengths of 2-5 um. Solar reflection occurs at
wavelengths of 0.7-3.0 um.

The plume has several complex interactions, including gas and particle
interaction, shocks from external structures, reflected shocks due to
pressure gradients and continued fuel combustion. These interactions are
depicted in Figure 4. The signature of the plume gases is primarily caused
by cO, and H,0 radiation, and has peaks at 1.4-1.9, 2.7, 4.3, 5-8, and 14-
16 pm (Figure 5). In the plume the burning of residual motor H, and CO with
ambient oxygen (termed afterburning) can contribute to the IR signature.
The latter is known to be important for solid propellant rocket motors.
Rowever, for ramjets there is generally little H, and/or CO in the plume
and little if any afterburning is expected. Metal particles added to the
fuel to increase the Isp also contribute to the plume IR signature.
Particles which are solidified as they leave the exhaust nozzle have low
emittance and, therefore, should not contribute significantly to plume IR
signature (although the visibility may be high). Liguid particulates

generally have much higher emittances which increase with particle size.
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FIGURE 4: Exhaust Plume of a Conical Nozzle at Altitude with M,.
(Adapted from [Ref. 6:p. 783 and Ref. 7:p. 9})

These particles can significantly affect the plume IR signature. Small
particle (< lum) are generally in equilibrium with the gas. At ramjet
exhaust temperatures these particleas generally will be solids. Larger
agglomerates of metals can form within the combustor. Depending upon the
obtainable combustion efficiency, unburned large molten metal and metal
oxides particles can pass from the combustor into the plume.

The plume emissions are reduced by atmospheric absorption (Figure 6)
and by cooling of the gases through the mixing of air with the plume

gases. [Ref. 4:p. 238-239, 382-389]
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The infrared (IR) spectrum covers electromagnetic emissions with

wavelengths from 0.77 to 1000 um.

bandwidths, 1) near IR or short-wave IR, 2) midwave IR, 3) far IR, and 4)

extreme IR.

atoms which are

IR energy carriers.

When an infrared ray impacts an object it can be absorbed (a),

reflected (p), or transmitted (T).

Figure 7 shows the range of each sub-area.

OVERVIEW OF INFRARED RADIATION THEORY

excited above ground energies emit photons which are the

The energy of the photon can be found by

E=hc/ A

a+pt+rTs=1]
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FIGURE 7: The Electromagnetic Spectrum {[Ref. 5:p.

5]

It can be broken into four general

Molecules and

Kirchhoff’'s Law applies in all cases;




In a case where a = 1, then all the ray is absorbed and the body
appears black. This body is referred to as a "black body”". For a black
body emitter, the radiant emittance (also known as radiancy, emissive

power, or radiant exitance) is determined by the Stefan-Boltzmann Law.

M =0T

Planck’s Law shows how the photon wavelength and a black body

emitter’'s temperature effect the radiant emittance.

‘Mb = J’ou Mkb da
My = (2 ® hc?) / (A (e -1))

The maximum black body spectral radiant emittance can be found by

using Wien’'s displacement law (Figure 3);

Auue = 2898/T (um)

All other materials can be broken into two other categories, gray
bodies and selective radiators. Emissivity (¢) is a comparison of their

spectral radiant emittance to that of a black-body radiator.

Gray bodies have a constant emissivity, while selective radiators have
emissivities that are dependent on wavelength. For a black body, £ = 1.
For gray bodies, emissivity can be used to compare radiant emittance.

[Ref. 5:pp. 4-16]




The previous laws can also be written for photon intensity (N,), which
is what c2:veral IR sensors measure. The photon intensity can be related

to the spectral radiant emittance (Planck’'s Law) by;

N, = eAM,,/hc = e2ac/(A‘(e™>'-1)) (photons/sec m’)

For a black body, the Stefan-Boltzmann and Wein’s laws can be modified

to provide for photon intensity.

N, = 0.37 o T / k (photons/sec m?)
Ape = 3663/T [um]

C. PURPOSE OF THESIS EFFORT

The objective of the thesis was to determine the effects of
equivalence ratio (¢) and fuel composition on the infrared signature of
solid fueled ramjets (SFRJ). Solid fuels investigated were Plexiglas,
HTPB, and HTPB with aluminum, silicon, boron carbide, and/or magnesium.
They were tested at chamber pressures of 80-170 psia and with equivalence
ratios between 0.3 and 1.4. In addition to providing needed plume
signature data for the SFRJ, this information can be used to validate
numerical predictions from the SPF (Standardized Plume Flowfield) and
SIRRM (Standardized Infrared Radiation Model) computer codes, which are

used to predict the plume infrared signature.
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II. EXPERIMENTA'. APPARATUS

A. GENERAL SYSTEM LAYOUT AND INTERFACE

The testing was conducted at the Combustion Research Laboratory,
Department of Aerocnautics and Astronautics at the Naval Postgraduate
School. The gensral layout of the system inside the cell is depicted in
Figure 8. The high pressure air and auxiliary support gas systems can be
seen in Figure 9. The system was remotely operated from the control room
via a control panel and a 9836-S Hewlett-Packard computer. Main air was
controlled by solenoid actuated, nitrogen operated ball valves with
pressure regulated by a nitrogen controlled dome valve. All auxiliary

gases were controlled by solenoid valves.

B. TEMPERATURE, PRESSURE, AND MASS FLOW RATE MEASUREMENTS

All temperatures were obtained using type K chromel/alumel
thermocouples with Omega type K thermocouple extension wires. Pressures
were obtained using Teledyne models 206-SA and 22Y-SA pressure
transducers. Additional sensors included a water cooled thermocouple and
water coocled pitot static tube for measurements within the plume.

The mass flow rates were determined using sonic nozzies together with
measurements of stagnation pressures and temperatures. The system had
five sonic nozzles, located in the lines of 1) main air, 2) the heater
exit, 3) heater fuel (hydrogen), 4) heater oxygen, and 5) ignition fuel
(hydrogen). Table I provides the sonic nozzle diameters and desired mass

flow rates.
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TABLE I: SONIC NOZZLES AND MASS FLOW RATES
{1

Location Throat Minimum Desired mass

Diameter (in) Pressure flow rate
(psia) (1b,/sec)

Main air 0.307 580 1.0

Heater inlet 0.607 225 1.0

Heater fuel 0.0395 465 0.0040

Heater O, 0.052 540 0.0280

Ignit. fuel 0.040 400 0.0040

. _______________________________________________|]
The mass flow rate at the throat (assuming the Mach number = 1), can
be calculated by,
m=C, P, AK/ T}

K= (y MW/R)"Z ((7.‘.1)/2)-1(7*1)/(2(7-1)))

TABLE II: GAS CONSTANTS
S

Gas type Molar wght Y R/MW K

Air 28.97 1.40 53.3 0.53183
oxygen 32.00 1.40 48.3 0.55888
Hydrogen 2.02 1.41 766.0 0.14067

C. DATA ACQUISITION EQUIPMENT

A Hewlett-Packard 3054-A Automatic Data Acquisition / Control System
was used to control valve functions and time all test sequences. An AT
computer utilized the Kaye Instruments DCALC program. This program was
the controller for a MDAS 7000 data acquisition system. The MDAS has 16

card slots, each card can have up to ten channels and can record values up
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to 9.22337 E+18 and as small as 5.42101 E-20. It is a sample-and-hold
device with an average maximum sample rate of 80,000 channels/sec with

pre-sampling and 185,000 channels/sec with no pre-sampling. [Ref. 8:p. 22]

D. INFRARED CAMERA SPECIFICATIONS
The AMEGA infrared camera has a series of filters and apertures, which
can be used to look at specific spectral bands and/or temperature ranges.

Major specifications for the AMEGA model 870 are given below.

1. Detector: SPRITE, thermoelectrically cooled MCT
Mercury Cadmium Telluride sensor, operates at -70°C with 3 stage
thermoelectric cooler.
2. Temperature Range: -20°C to 500°C (1500°C with filters)
3. Sensitivity: 0.1°C at 30°C
4. Accuracy: + 2 % or + 2°C
5. Wavelength: 2-5 um
6. Lens: View range: 20°
Min focus: 0.5 m
Focal dist: 38 mm
Geometrical Resolution: 3.5 mrad (50% contrast)
7. Control: CU-800C Computer system (TIC-8000 program)
8. Scan rate: 5.75 or 25 (in burst mode) full frames/sec
9. Aperture settings: 0 (5.8 mm), 1 (2.4 mm), and 2 (1.0 mm)
10. Filters: 0 (No filter), 1 (Glass), 2 (Flame)
[Ref. 9:pp. 1.2-1.3]

The camera measures in instrument units (IU) which are directly

proportional to the photon intensity. The control program can then
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convert the IU's to photon intensity and can use a simplified version of

Planck’s law to relate that intensity to absolute temperature.

I =R/ (e -F)

Changing the aperture allowed for a larger range on the temperature
scale. By adjusting the thermal control, this scale could be moved up and
down. However, the maximum temperature eventually peaked, and increasing
the voltage only reduced the scale by raising the minimum temperature.

[Ref. 9:p. 8.2]

E. RAMJET MOTOR

The ramjet consisted of six components; the head-end, the fuel and
casing, the forward adapter assembly, the mixing chamber, the aft adapter
assembly, and the nozzle (Figure 10). The head-end assembly housed the
igniter, several sensors, the nitrogen purge connection, the igniter fuel
connection, and the step inlet. The reverse step generated a
recirculation region at the head-end of the fuel grain. This provided the
means for flame stabilization. It had an inner diameter of 0.75 inches.
The gases rapidly expand into the cylindrical fuel grain and then pass
through the forward adapter assembly. This assembly was made of 304
stainless steel. The assembly was 5.1 inches long and had an inner
diameter that expanded from 1.4 to 2.2 inches. The mixing chamber was 8
inches long, had an inner diameter of 2.1 inches, and had a low carbon
steel casing that housed a removable insulating (Dow Corning 93104)
sleeve. It was threaded at both ends, which allowed the forward and aft
adapter assemblies to be joined. The aft adapter assembly was also made
of 304 stainless steel, had an inner diameter of 2.15 inches, was 4 inches
long, and had the chamber pressure measurement connection. The flow

finally passed through a converging-diverging nozzle. The nozzle
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FIGURE 10: Ramjet Configuration

convergence had a half-angle of 45°, the divergence had a half-angle of
15°, and the throat had a flat of 0.1 inches. The throat was 1.17-1.30

inches in diameter and the nozzle exit diameter was 1.48-1.52 inches.

rF. FUEBLS

Three basic fuel types were tested; Plexiglas, HTPB, and metalized
HTPB. The cylindrical fuel grains had an inner diameter of 1.70-1.75
inches, a fuel thickness of 0.29-0.33 inches, and a length of either 6.5
or 13 inches. The metalized fuels were encased in an aluminum shell with
a thickness of 0.65 inches. The Plexiglas fuels were manufactured at the
Naval Postgraduate School. The metalized fuels provided by the Naval
Weapons Center, China Lake, Ca., were M-096, M-096 (No Mg), M-103, M-014,
M-105, and M-106. The actual fuel composition concentrations were

classified. However, the major ingredients were as follows;

1. M-096(NM): HTPB, Boron Carbide, Catalyst

2., M-096: HTPB, Boron Carbide, Magnesium, Catalyst
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3.
4.
5.
6.

M-103:
M-104:
M-105:
M~106:

HTPB,
HTPB,
HTPB,

HTPB,

Boron Carbide, Aluminum,

Aluminum

Aluminum, Catalyst

Silicon

l8

Catalyst




III. EXPERIMENTAL PROCEDURES

A. TEST PROCEDURE
1. 8et Up

Initially, the five sonic nozzles were installed. Soot and
combustion product residuals made it necessary that the igniter and lines
to it were disassembled, cleaned, and reassembled for each test. The fuel
was weighed and the length and inner diameter of both ends were measured
and recorded. The fuel was then installed between the head-end adapter
and forward assembly. The mixing chamber liner was inspected and replaced
if required. Then the forward assembly, mixing chamber, and aft assembly
were joined. If the nozzle had been used for a previous firing, the
throat diameter was measured. When the metal fuels were used, significant
nozzle erosion occurred. The nozzle was then reattached to the aft
assembly to form the completed ramjet. The ramjet was attached to the
head-end and all connections to the pressure transducers were made.

The Lnfrared end v1deo cameras were set up and covered with
plastic if necessary. The infrared camera line-of-sight was placed
perpendicular to the plume jet and at the same level as the nozzle exit.
For the first 10 tests, the IR camera was placed four feet from the ramjet
and centered at a location 11 inches downstream of the nozzle exit. For
all other tests, the camera was placed five feet from the nozzle and
focused at a location 15 inches downstream of the nozzle exit. This
change was made to accommodate an increase in the distance of the plume
thermocouples from the nozzle. The IR camera was focused by setting it to
a zero aperture with no filter. Once it was properly focused, the
aperture and filter were reset for the firing. For the tests 1-11, 18,
19, and 24, the camera was used with no filter and an aperture of two.

For test 12, the aperture was changed to zero. For tests 13-17, the camera
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was used with no filter and an aperture of one. For all other tests the
glass filter was used with an aperture of one.

Various pressure and temperature measurement devices were placed
in the plume. For tests 2-12, a water-cooled pitot static tube was
installed for determining the plume Mach number. This instrument could
become clogged and thus was removed when the metallized fuels were fired.
A water-cooled thermocouple was installed for all tests from 2-24. A
second thermocouple (not water-cooled) was installed between tests 8 and
9. For all tests prior to test 11, the instruments were located at 21
inches from the nozzle exit. All subsequent tests had the instruments
moved to 25 inches from the nozzle exit. This was done so that the
instruments remained in the subsconic flow.

The final portion of the setup required energizing the MDAS, HP

and AT computers, the control panel, and the IR camera control systems.
2. Calibration and Calibration Checks

The pressure instruments were calibrated with a dead weight
tester for the initial test, then once a week, or if the instrument
provided faulty readings. In conjunction with the dead weight tester, the
MDAS/DCALC system was used to obtain voltages from the pressure transducer
subjected to a known pressure loading. With two different load data
points, a linear relationship (slope and intercept) was obtained. These
values were stored in the DCALC program for conversion of subsequent
voltages directly to pressures. A similar method was used for calibrating
the thermocouples. Prior to each test, the DCALC program was run to
verify that all the thermocouples and pressure transducers were reading

approximately ambient temperature and pressure, respectively.
3. Flow Rate Checks

Pre-firing flow rate checks were performed on main air, heater
fuel, heater oxygen, and igniter fuel. The control and actuator nitrogen
bottles were placed on-line and the main air isolation valve was opened.

Each flow was then checked separately, by first placing the appropriate
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supply bottle on line or, for the main air, the dome control valve was
pressurized. A visual inspection was made to ensure that no one was in
the cell and a warning alarm was sounded to ensure all personnel outside
knew that the ramjet would have flow passing through it. The DCALC
program was then executed and the flow was manually initiated from the
control panel. The flow could subsequently be adjusted by raising or

lowering the pressure setup point of the regulator.
4. Firing the Ramjet

once the preliminaries were completed, the IR camera scale was
selected for a range of 500°C, assigned to the virtual disk, and set for
a 120-frame (approximately 20 seconds) sequential storage that was to be
manually initiated. The HP computer control program was then started, so
that the desired timing sequence could be input. This program controlled
the solenoid operating valves and had four distinct time markers. These
markers were 1) the time to flow air through the motor prior to ignition,
2) the total ignition time, 3) the burn time, and 4) the purge time.
Normal values for these were 4, 1, 6, and 4 seconds, respectively. For
the M-100 series fuel grains, the desired burn time was set to 5 seconds
or less. After receiving the time markers, the program pauses until the
actual firing starts.

Ambient pressure, read from a barometer, and temperature were
recorded. All auxiliary bottles were then placed on line and the water
flow to the plume instruments was started. A check was made to ensure
that no personnel were downrange of the ramjet. A fire-warning alarm was
then actuated. On the control panel, the safety keys were turned to
"operate” and the main air was started. 1Initially the dump valve was open
and the ramjet air isolation valve was shut (See Figure 8). The air flow
discharged to the atmosphere through the dump valve after passing through
the vitiated heater section. This allowed for the air to be pre-heated
prior to firing. The heater gas flows were initiated and ignited. While

the air temperature was rising, a video camera was started. When the air

21




temperature stabilized, the HP computer control, DCALC, and the IR camera
programs were simultaneously executed. The HP program initiated the
opening of the ramjet air valve and then closed the dump valve,
redirecting the hot air through the ramjet. After the first time marker
had elapsed, the fuel igniter actuated for the specified time. Main air
flow continued until the preset burn time had expired, then it was
redirected out the dump valve and a nitrogen purge was sent through the
ramjet to extinguish the burning. The main air flow was maintained to
cool the air heater. Once the heater had cooled, the main air flow was

secured.

5. Post Firing Procedure
After the firing, the safety keys were turned off, the heater
gases were stopped, the fire-warning alarm was secured, and the video
camera was stopped. All auxiliary gas bottle isolations were shut. The
IR camera data was reviewed and the necessary frames were tranaferred from
the virtual disk to permanent storage. The DCALC data sheet was saved.
The ramjet was then disassembled. The fuel was weighed and the inner

diameters of both ends were measured.

B. DATA REDUCTION

The data analysis was performed with the DCALC program, the MICROPEP
program [Ref 10}, and a HP-28S calculator. The DCALC program provided the
pressures, temperatures, and mass flow rates with respect to time. The
MICROPEP program was used to provide the gas properties and theoretical
adiabatic combustion temperature. Figure 11 depicts the station
numbering. The parameters have sub-labels for indicating station numbers,

and possibly a "p" for pre-ignition or "b" for during the burn.
1. DCALC Data

A pressure time trace was obtained to determine the actual burn
time (t,). The average mass flow rates of the heater fuel (ﬁg), heater

oxygen (ﬁ”) and main air (EL) were obtained. These were combined to get
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the total gas mass flow rate.

m o= m, R, 4w

Also, from the data sheet, the head-end pressures (P,,, and P,.,),
chamber pressures (P,, and P,,), and head-end temperatures (T,,, and T.,)
were obtained.

The fuel mass flow rate (m,) was obtained by dividing the change
in mass by the burn time. Adding all the mass flow rates together
provided the total mass flow rate (ﬁwul). The fuel-air ratio was found by
dividing the mass flow rate of the fuel by the gas mass flow rate (f =
m,/m;) and the equivalence ratio was found by dividing the fuel-air ratio

by the stoichiometric fuel air ratio.

¢ = f / f.wteh

2. Pre-Ignition Calculations
The pre-ignition data were used to determine two parameters, the

air heat of formation (to account for heat losses between the air heater
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and ramjet inlet) and the nozzle discharge coefficient (C,). During this
portion of the data analysis, x:\{ was 2zero. Air at 25°C has a heat of
formation of zero. Using the pre-ignition head-end pressure (P.,), the
mass flow rates of the gases, and guessing an approximate heat of
formation for air, MICROPEP was used to calculate an expected head-end
temperature. This temperature was compared to the actual head-end
temperature (T.,,). Ther the air heat of formation was modified until the
MICROPEP temperature and the head-end temperature matched. This heat of
formation was used in all subsequent MICROPEP calculations.

The nozzle discharge coefficient (C,) was used to determine an
"effective" throat area. This coefficient also accounted for inaccuracies
in the measurement of the nozzle diameter, pressures, temperatures, and
heat losses. C, was considered to be constant throughout the test. The
following assumptions were made for the hot air flowing through the ramjet

prior to ignition:

Ty = Tep ® Tesp = Tezp = Ty
MW = MW, = MW,, Pup = Pisp

, .
rnq-—.m‘P:msP Y=Ylp=759

A pre-ignition molecular weight (MW,,) and specific heat ratio
(Ys) were obtained by running MICROPEP using the pre-ignition chamber
static pressure (P,,) and the mass flow rates of the gases. The nozzle
contraction area ratio was known. For a throat Mach number of 1 the
contraction area ratio yielded the pre-ignition chamber Mach number (M,)).
This Mach number was then used to solve for the chamber stagnation

pressure (P,,) from the measured value of P,,.
AR = [1/Mg] [2/(y+1)] [1+(y=1)M7/2]0m /20

Pep = Ppll+(y-1 )M.p’/2 MY
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C, was then found by applying the continuity equa.ron1.

Co = My / {PujAs [(YMH)/(R T,p) 1M3[2/ (Y+1) 0r0/a0mn )

3. Combustion Efficiency Calculation
The next step was to calculate the temperature rise combustion
efficiency (n). MICROPEP was run using the burning chamber pressure (P,,)
with all the gas and fuel flow rates to find values for the molecular
weight (MW, ), equilibrium chamber temperature (T,,) and specific heat ratio
(Yon) - In the equations that follow, y = y,,, MW = MW,, and y is the

"process” y between A, and A;.
. 1/2
Meear = Poo B¢ My, [Y 9o MW / R T,)

These values were used to find the Mach number, M,,. With this
Mach number, the stagnation pressure could be found using the isentropic

relationship.

Pew = P [1 + (v + 1) M2/ 217/0r -1

Using P,.,,, MICROPEP was rerun to find the theoretical stagnation
temperature (T.,.,), and new values for the molecular weight (MWw,,) and
specific heat ratio (yg).

With the previous value of C,, the experimental stagnation

temperature (T.,,) was found using

r:ltotal = CD Pt‘b AS [(Y gc MW)/(R Ttloxp)]llz [2/(Y+1)]”¢U/2(Y-1)
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With these temperature values, the combustion efficiency was

calculated using
N = (Tiiexp = Tean) / (Teww,en = Teap)

The combustion efficiencies for the metalized fuels were
classified. In order to include these values, all the values of 1 were

normalized with a reference value (7).

4. Fuel Regression Rate

The average fuel regression rate (;) was obtained by first
calculating the post-firing average inner diameter (d;,.). The value of

d; ... was calculated using the change of mass (Am) given by
Am = p!uelLf\uln(d! nvez - dx -vcz) /4

With the d, ,. known, the average fuel regression rate was

calculated using
®
r = (df ave ~ d.‘\ uvn) / (2 tb)

5. Emissivity of the Plume

The plume temperatures produced by the IR camera depend upon the
specified emissivity (g&,). The equivalent plume emissivity at a point
within the subsonic region of the plume was determined by adjusting g,
until the calculated plume temperature was identical to the measured plume
static temperature. It was assumed that the plume was a gray body. The
camera control software allowed for the insertion of an emissivity between
0.1 and 1. As g, was decreased the plume temperature increased. The
actual maximum temperature was often above the maximum temperature
permitted by the IR camera for the specified filter and aperture setting.

In this case, it was necessary to use a modified version of Planck’s Law
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to get €,. The process consisted of four steps; calculating the plume Mach
number and effective y, determining the actual plume static temperature,
obtaining an average IR camera plume temperature in the same location as
the probes and then using Planck's Law to find the ¢,.

In order to obtain the emissivity of the gas-particle mixture, it
was assumed that the particles and gases were at the same temperature. A
pitot static pressure tube and thermocouples were installed into a
subsonic portion of the plume. The plume stagnation temperature (T ;ium):
stagnation pressure (P, ..)r and static pressure (P,.) were then obtained
from the DCALC data sheet. An energy balance was then used to determine
an effective specific heat ratio of the plume(Y,ium)- An approximate
energy balance was used to determine the entrained air mass flow rate in
the plume (ﬁg). The specific heats at constant pressure for the air and

plume were assumed to be equal, thus simplifying the energy balance.

¢ * [ .
(mtotul"'mu)Tt plume = mtotulTub + mnTunb

Mass averaging the specific heat ratios then provided an

"effective" specific heat ratio for the plume, namely

Yplume = ‘Yﬁ‘a + Y4b !'ntotal)/(;n. + ﬁltotnl)

The isentropic pressure relationship was then used to find the
plume Mach number (M,..). The Mach number and either the water-cooled or
non-water-cooled thermocouple temperature (T..,iume OF T:pime: 'C’' indicates
water cooled) were used to find the static temperature with the isentropic
temperature relation. This wvalue was not highly accurate since the
temperature measurements were not corrected for radiation.

The IR camera computer program allowed for a "spot” or "area”
function to be used to determine the plume temperature. Both functions

were used to observe the IR calculated temperature around the probe. For
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the object emissivity calculations, the "area" statistical plume
temperatures for 4-6 frames were averaged to obtain the average camera
plume temperature (T, ...)- Knowing that the camera captured signal was
independent of the object emissivity, it was determined that

(Ref. 9:pp 8.1-8.2],
I =R/ (e¥f™e _F) =g R/ ( e/™rb _ F)
Thus,
= ( e¥mwrebe _ ) / ( @B/Tcen ave _ F)

€0

In the equation above, B and F are functions of the camera filter

and aperture and are shown in Table III.

TABLE IIX: EMISSIVITY CORRECTION FACTORS

Filter Aperture B F
None (NOF) 0 3146 -438
None 1 3286 -116
None 2 3513 -4.94
Glass 1 2935 -3.58

(Ref. 9:p 8.2]
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IV. RESULTS AND DISCUSSION

A. RAMJET FIRING RESULTS
Twenty-four tests were completed and the results are consolidated into

Tables IV through VII. The IR data are provided in Appendix A.
1. General Comments Concerning the Tabulated Results

1. If a block contains an "X", that information was not available.

2. The combustion efficiencies were classified for all the metalized
fuels. The efficiencies for all the tests have been normalized with a
reference value of efficiency.

3. During test 7 the water-cooled thermocouple was overheated. This
instrument subsequently provided low plume temperatures and was not
included in the tables after test 8. g, was calculated using the non-
water-cooled probe temperature when it was available.

4. The irradiance/emittance values are based on an object emissivity
equal to 1 (a black body approximation).

5. For tests 20-23 a glass filter was used, while all other tests used
no filter. The glass filter attenuates the signal (the data on the actual
percent attenuation versus wavelength was unavailable). However, the
system software included the calibration curves for all apertures and

filters. This permits all data to be compared on an absolute basis.
2. Specific Comments About Individual Tests

1. Test 1l: This test was performed without the IR camera. The fuel
never ignited and, therefore, the data were not included.

2. Test 2: IR data were lost.

3. Test 3: A communication error occurred between the MDAS and DCALC
program, therefore no DCALC data were available. This test run was

included because of the irradiance data.
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4. Test 4: This was a previously fired M-096 fuel. A programmed three
second burn time was too much and a fuel casing rupture occurred. These
data were excluded, however M, = 0.45.

5. Test 5: The MDAS data were not obtained due to operator error.

6. Test 8: The IR data were not obtained due an improper setup by the
operator of the sequence storing routine.

7. Test 9: A hold-down leg was left unlocked to allow for the plume
instruments to be aligned with the nozzle exit. Upon ignition the plume
instrument was turned sideways, negating the plume temperature data.

8. Test 10: The grain was initially fired and no IR or visual data were
noted, even though the fuel ignited. Based on the lack of both the IR and
visual data, it was assumed that the fuel had not ignited. After cooling
the ramjet, the test was run again. Approximately 1.5 seconds after
ignition the casing rupture. The data were discarded with the exception
of the value for M,,., which was equal to 0.7.

9. Test 13: The IR data were lost due to turning off the computer
prior to transferring the data off of the virtual disk.

10. Test 15: A casing failure occurred near the very end of the run
due to an excess programmed burn time. Also a communication error caused
the DCALC data to be lost.

11. Test 17: A casing failure occurred near the very end of the run
due to an excessive programmed burn time. Since this occurred in the
final second of the test, a weight correction was made to account for the
missing casing. These data can be compared with those of Test 24.

12. Test 20: The M-104 thrust was greater than anticipated and forced
the plume instruments out of the plume. For subsequent tests the

instrument table was weighted down.
3. Plume Mach Number and Specific Heat Ratio

The first ten tests were used to determine the approximate Mach
number (M,,.) and the effective plume specific heat ratio (Y,u.) at 15

nozzle exit diameters into the plume. These values were then used to find
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T M, . varied from 0.45-1.05. For test 4, which used a metalized

plume °
fuel, the calculated low Mach number was probably due to particles
clogging the pitot tube. Tests 6 and 7 showed Mach numbers greater than
one, however the stagnation pressure read one psia greater than the static
pressure with no flow, making these values questionable. The stagnation
pressure transducer was replaced with one that had a smaller range, and
then both the static and stagnation pressure transducers were recalibrated
for tests 9-12. Disregarding tests 7 and 8, all other tests indicated
that the plume Mach number was approximately 0.7.

An energy balance was used to determine the amount of ambient air
that was mixed with the plume products at the point of temperature
measurement. The ambient air mass flow rate to exhaust mass flow rate was
found to be about 3 to 1 for all the tests. The mass-averaged specific
heat ratio was found to be 1.34-1.38.

For tests 13-24, the plume was assumed to have M,;,,=0.7 and

Ypiume=1+35.
4. Plume Temperature

For tests 2-24, a water-cooled thermocouple was used to measure
the actual plume temperature. During test 7, this thermocouple was
overheated. An instrument calibration check showed that it was operating
properly, however the water cooling sleeve had an unrepairable leak. This
leakage lead to excessive cooling of the sensor wire. Another non-water-
cooled thermocouple was installed prior to test 9. This instrument
consistently read higher, from 50-500°R, than the water cooled
thermocouple. For tests 11-24, the non-water-cooled instrument was used

to find the plume temperature.
S. Emissivity

Both the T, and T.,,.. were obtained for the same period after
ignition. This required the DCALC and IR data times to be synchronized
(manually after the test). A representative frame was selected from the

IR data and the time elapsed between it and the initial IR frame was
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found. Then the T, .. Was found by averaging the temperature around the
probe for 4-6 frames. The temperatures were obtained using the "area” and

"stat” functions for the IR system. The DCALC T, Vversus time trace was

ume
then checked to find the average T,.,. for the same pericd. These
temperatures were then used to find the average emissivity. The

emissivities varied from 0.07-0.39, neglecting the results from test 7.
The average plume emissivity for all the fuels was approximately 0.2.
Much of the variation in the calculated plume emissivity could have
resulted from the inaccuracy of the plume temperature measurements. The
response times of the thermocouples were too long and no radiation
corrections were made. Future measurements should use much finer
thermocouple wire mounted within radiation shielding enclosures. Based
upon other experiments being conducted at the Combustion Laboratory, it
was expected that the effective plume emissivity was below 0.10. If true,
this would indicate that the thermocouples did not record the actual

maximum temperatures.

6. The Effects of Fuel Composition, ¢ and n on Irradiance

The irradiances/emittances provided were obtained by modeling the
plume as a black body. The camera temperature range (difference between
the maximum and minimum temperatures) was restricted to a maximum of 500
decrees, which was significantly less than the temperature range within
the plume. This meant that only a portion of the plume temperature could
be monitored. The camera aperture and filter were set prior to the firing
based on an expected intensity/temperature of the plume. The aperture and
filter were manually controlled on the camera and could not be changed
once the firing began. Another means for adjusting the IR camera was the
thermal level control that allowed for partial movement of the 500 degree
band up and down the temperature scale. However, the program still
restricted the maximum temperature based on the filter and aperture
selected, and the burn times between 5-8 seconds were inadequate to permit

readjustment.
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In order to obtain data for the plume emissivity the temperature
band was kept low on the temperature scale, which often lead to signal
saturation at the center of the plume. This has been annotated by a ">"
sign or if excessive saturation, a ">>" sign in Tables IV through VII.

After the emissivities were determined, attempts were made to
obtain adjusted irradiances. The object irradiance is calculated in the
software from the camera signal, accounting for atmospheric absorption and
reflected irradiance. With an ¢,=1, the object signal matches the camera
signal. Since the actual camera signal was a constant, lowering the
specified &, caused the object irradiance to decrease and the temperature
to increase. Therefore, the actual irradiance of the object is less than
what is shown in Tables IV to VII. Also when the g, was adjusted, the
saturated region increased in size. In order to compare results, the
value of g, was kept at one for all the tests.

Since IR signature is very sensitive to temperature it was
expected that the irradiance might correlate with the actual combustor
stagnation temperature (T,, ,,). T op iNcreases as the equivalence ratio
approaches unity. It is also affected by the fuel composition and by the
obtainable combustion efficiency. The measured irradiances for €,=1.0 are
plotted vs Ty ,,/T¢ in Figure 12. This figure is typical of what might
be expected from a field instrument which would also use a fixed value for
£,. The actual values of irradiance will be lower (since €,<1.0) and the
relative values between the fuels may be somewhat different due to
differences in the actual g, values from test to test.

As expected, increasing T increased the irradiance. The

t4 exp
irradiance increased approximately with the second power of the actual
combustor stagnation temperature. Also from Figure 12, some limited data
trends were noted. The addition of magnesium caused the irradiance to
increase. The addition of silicon caused the irradiance to decrease. The

use of B,C with Al (M-103 fuel) appears to have greatly increased the plume

irradiance. Comparison of the calculated exhaust species for the high
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FIGURE 12: Irradiance Characteristics with T,

temperature data using M-104 and M-103 fuels indicated that significant
amounts of BHO, were present in the exhaust of the M-103 test. However,
this was based on very limited data and the effect was not present at
lower temperatures. Finally it can be seen that the metallized M-096 fuel

and pure HTPB had similar IR signatures in the 2-5 um.

34




TABLE IV: RESULTS FROM TESTS 2-8
Test No. Units 2 3 6 7 8
Fuel Type PLEX HTPB PLEX HTPB HTPB
Liver inch 11.88 13.00 11.94 12.06 13.00
| P psia 14.62 14.53 14.19 14.53 14.53
Tems °R 524.9 524.9 524.9 524.9 520.1
d. inch 1.22 1.22 1.22 1.22 1.23
Filter NOF NOF NOF NOF NOF
Aperture 2 2 2 2 2
Deun inch 48 48 48 48 48
Ly robe inch 21 21 21 21 21
Pw psia 87.5 X 91 107 118
T °R 897 X 1126 1153 1113
r in/sec 0.0174 | 0.0331 | 0.0375 | 0.0263 | 0.0312
m, lbm/sec 0.0025 X 0.0041 | 0.0041 | 0.0039
x:\o, lbm/sec 0.0318 X 0.0285 | 0.0287 | 0.0321
m, lbm/sec 0.9850 X 1.0095 | 0.9250 | 0.9990
m lbm/sec | 0.0538 X 0.0985 | 0.0826 | 0.0861
t, sec 6.20 7.00 7.35 6.70 9.55
d 0.44 X 0.79 1.18 1.13
N/ Mot 0.74 X 0.88 0.84 0.88
Teun max °R X >1387 1226 >1412 X
Tean ave °R X 1248 793 1183 X
Tec piume °R 1550 X 1080 1480 —956-
Te c1ame °R X X X X X
M, ume 0.7 X =+ 05 0.7
Y plune 1.336 X 1.368 1.359 1.368
Eo X X 0.20 950~ X
M, (£.=1) w/m? X >20000 12000 | >21000 X

{(Lined out data were found not

to be valid.)
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TABLE V: RESULTS FROM TESTS 9-14
Test No. Units 9 11 12 13 14
Fuel Type HTPB HTPB HTPB M096 M096

(NM) (NM)
Lyya inch 13.00 6.13 6.44 6.38 6.5
Pu psia 14.53 14.66 14.71 14.72 14.73
T °R 521.7 524.8 515.9 515.9 521.0
d,, inch 1.23 1.23 1.23 1.24 1.24
Filter NOF NOF NOF NOF NOF
Aperture 2 2 0 1 1
Dewn _ inch 48 60 60 60 60
Lorobe inch 21 25 25 25 25
P peia 122 89 88.5 90 87
°R 1085 1084 1077 1128 1138
r in/sec | 0.0305 | 0.0291 | 0.0262 | 0.0276 | 0.0272
m, lbm/sec | 0.0040 | 0.0040 | 0.0039 | 0.0044 | 0.0044
m,, lbm/sec | 0.0313 | 0.0308 | 0.0291 | 0.0312 | 0.0313
m, lbm/sec | 1.0350 | 1.0070 ] 1.0130 | 1.0200 | 1.0200
M, lbm/sec | 0.0782 | 0.0358 | 0.0339 | 0.0561 | 0.0564
t, sec 9.30 7.20 8.00 7.50 7.50
¢ 1.07 0.47 0.44 0.56 0.54
N/ Mrar 0.84 0.75 0.77 0.50 0.56
Teun mex °R >1412 X >805 X >1075
Tom ave °R 1187 X 685 X 821
T, 1ume °R X 1070 1070 1210 1200
M lome 0.70 0.85 0.70 X X
Y p1ume 1.373 1.368 X X X
£, X X 0.17 X 0.22
M, (£,=1) w/m? >21000 X >2271 X >7224
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TABLE VI: RESULTS FROM TESTS 15-1§
Test No Units 15 16 17 18 19
Fuel Type M104 M104 M105 MO096 M096
(NM)

Lver inch 6.44 6.47 6.50 13.06 13.00
Pew psia 14.71 14.56 14.71 14.65 14.69
Tom> °R 521.0 521.0 524.9 524.9 521.7
den inch 1.24 1.24 1.24 1.27 1.30
Filter NOF NOF NOF NOF NOF
Aperture 1 1 1 2 2

Deun inch 60 60 60 60 60
Lorobe inch 25 25 25 25 25
P, psia X 102 105 120 107
Tean °R X 1132 11459 1077 1080
r in/sec X 0.0324 0.0348 0.0277 0.0332
m, lbm/sec X 0.0042 0.0043 0.0039 0.0040
m,, 1bm/sec X 0.0307 0.0307 0.0321 0.0310
ﬁ\, lbm/sec X 1.0200 1.0220 0.9960 1.0170
x'n, lbm/sec X 0.0747 0.0829 0.1134 0.1353
t, sec X 6.35 6.20 6.35 5.55
o X 0.30 0.33 1.12 1.31
N/ Meor X 0.74 0.72 0.80 0.55
Teun max °R 1130 1129 >>1091 >1444 >>1412
Tean ave °R <852 825 1012 1223 1217
Ty piume °R X 1430 1550 2000 2160
€, X 0.14 0.39 0.20 0.16
M, (£.=1) W/m? 8759 8761 >>7651 >23000 >>21000
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TABLE VII: RESULTS FROM TESTS 20-24

Test No Units 20 21 22 23 24
Fuel Type M104 M105 M106 M103 M105
Lsger inch 12.94 13.00 13.07 12.88 6.47
Poo psia 16.14 16.12 16.11 14.66 14.65
Toms °R 530.0 524.6 524.6 524.6 523.1
d. inch 1.17 1.22 1.25 1.30 1.30
Filter GLS GLS GLS GLS NOF
Aperture 1 1 1 1 2
Dean inch 60 60 60 60 60

| Diprobe inch 25 25 25 25 25
P, psia 173 147 137 125 91
Te °R 1104 1064 1104 1133 1131
r in/sec | 0.0368 0.043¢ 0.0343 0.0256 0.0310
m, lbm/s 0.0040 0.0042 0.0039 0.0039 0.0039
m,, lbm/s 0.0312 0.0322 0.0323 0.0325 0.0324
ﬁ\, lbm/s 1.0050 1.0200 0.9600 0.9040 0.9090
m lbm/s 0.1726 0.2221 0.1514 0.1330 0.0748
t, sec 6.70 6.30 6.05 5.80 5.25
P 0.70 0.88 1.41 1.08 0.33
LTA 0.88 0.71 0.93 1.00 0.61
Tean max °R 1619 1450 1372 1754 1309
Team ave °R 1028 971 818 901 791
Te plume °R X 2150 1800 1260 1280
€, X 0.08 0.04 0.28 0.07
M, (e,=1) W/m? 28000 32000 22000 62000 17000
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B. PLUME SIGNATURE COMPUTER CODES

Attempts were made to compare the measured plume signature results
with predictions made using the Standardized Plume Flowfield (SPF) and the
Standardized Infrared Radiation Model (SIRRM) codes [Refs. 6,7,& 11].

SPF is a computer code comprised of several subroutines that account
for the particle and gas interactions in the nozzle, near surfaces
external to the nozzle, the separation area following the exhaust, and the
plume area. This code provides for: 1) the modelling of the flow in and
the overlap of the nearfields, transition region, and farfields; 2)
evaluating the effects of chemical kinetics, two-phase flow and various
turbulence models; and 3) the interference of external solid bodies and
the subsonic region after the Mach discs. It uses a fully-coupled Navier-
stokes solution for the nearfield and transition regions and constant
pressure mixing for the farfield. It features: single and two-phase flow,
Mach disc mixing/chemistry, nonuniform composition exhaust, finite-rate
and equilibrium chemistry options, and finite-rate chemistry throughout
the plume. [Ref. 6:pp. 804,814] Two routines are available for obtaining
the plume properties, SCIPPY (shock-capturing inviscid plume model) and
SPLITP. Scippy calculates the inviscid flow and shock structure. Splitp
accounts for turbulence in the nearfield and farfield. These routines can
be run separately or together. [Ref. 7:pp. 191-192]

SIRRM is a six-flux numerical code used to approximate the infrared
radiation emitted from isothermal and homogeneous models of missile and
aircraft exhaust plumes. It is a code that accounts for atmospheric
transmission of the emitted radiation, and couples the absorbing and
scattering processes of the particles and molecules in the plumes. It
allows for " 1) the important molecula: vibration-rotation bands, 2) Mie
scattering, 3) nonhomogeneous particulate and gaseous concentrations, and

4) variable temperatures throughout the plume volume " [Ref. ll:p. 426].

39




Although many man-hours were spent operating the SPF code, the files
needed for input to SIRRM were never obtained. The SPF code is very
complex and was found to require extensive effort simply to understand the
input parameters. Although a new setup routine was made available with
the latest revision of the code, the documentation was designed more for
experienced SPF operators. In order to help future NPS students in
operating this code, an instruction manual was generated and several

executable files were compiled to help reduce the confusion.
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V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The following conclusions were drawn from this investigation:

1. The irradiance/emittance of the plume increased approximately with
the second power of the actual combustor stagnation temperature.
Increased temperature resulted from equivalence ratios closer to unity,
higher energy ingredients and higher obtainable combustion efficiency.

2. The addition of magnesium (Mg) appeared to increase the
irradiance/emittance.

3. The addition ‘of silicon (Si) appeared to decrease the
irradiance/emittance.

4. A more accurate and faster response time technique is needed for
measuring the plume temperature.

5. The metallized M-096 fuel produced approximately the same plume IR
signature as HTPB in the 2-5 um range.

6. At 15 nozzle exit diameters into the plume the approximate Mach
number was 0.7, the specific heat ratio was 1.35, and the entrained air to
plume gas mixing ratio was approximately 3:1.

7. The effective emissivity of the SFRJ plumes had an average value of

approximately 0.2.

B. RECOMMENDATIONS
Testing should continue in this area. Due to the nonavailability of

previous test data, the small inventory of some fuels, the long time
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required for each test, and the inexperience of the operator, the exact
irradiance and performance data were not always obtained.

Future testing should be done with the plume emissivity set at 0.2.
Setting the object emissivity initially low will also give a more
realistic value of irradiance from the IR camera. It will also reduce the
saturation of the plume center when the actual ¢, is used.

Specific interest should be placed on studying the effects of silicon,
which appear to decrease the irradiance, and the M-103 composition, which

appeared to significantly increase the irradiance.
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APPENDIX A

IR DATA RESULTS
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A. TEST-3 IR RESULTS:

Fuel:

Type: HTPB
Length: 13.00 inches
IR Camera Data:

Filter: None
Aperture: 2

Lprobe t 48 inches
Environmental Conditions:
Tams® 524.9 °R
Pos? 14.53 psia

Graph (Right): Temperatures (e =1)
from IR camera for 5 sequential

frames. Three "spot” functions
and one "area" function.

Team ave (Eo=1): 1248°R

Frame (Below):

Length: 20 inches
Time (into burn): 6.03 sec

Toam max (Eo=1): >1387°R

>20,000 W/m?

Burn Status:

| Unknown
t, 7.0 sec
¢: Unknown
n: Unknown
Teo pluse Unknown
£, (Calc): Unknown

FIGURE A-2: TEST-3:
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B. TEST-6 IR RESULYTS:

Fuel:

Type: PLEXIGLAS
Length: 11.94 inches
IR Camera Data:

Filter: None
Aperture: 2

Lprose 48 inches
Environmental Conditions:

SRR 524.9 °R
Pt 14.49 psia

Graph (Right): Temperatures (g,=1
rom IR camera for 6 sequential
frames. Three "spot” functions

and one "area”" function.
Toen ave (E,=1)¢ 793°R
Frame (Below):

Length: 20 inches

5.29 sec
1226°R
12,000 wW/m?

Time (into burn):
TGI- »ax (€°=1 ) 3

Burn Status:

Pyt 91

t,: 7.35 sec
¢: 0.79

Tee pluse? 1080°R
€, (Calc): 0.20

FIGURE A-4: TEST-6:

-

=42 inoh adove
-#- Centorline
=+ YR insh below 'S

............

=B=Area GheVe [ 4 A -

10
%0

P ST IO PSS B P U TPV P T PV P

T T T 717
8.2

R I R

63 64 65 68 &7 33 B9
Time (soe)

FIGURE A-3: TEST-8: Plume TnTlil.l.poutuu

At 14 Nozzle Diameters From Nozzle
Exit (Based On An Emissivity=1)

81

813 Luehrsen:
7691 | Fleviglass
6697 |

5821 |
SWEFWE' saa
4234 Level: 2
3682
3eas
2936
2166

1742

test &

EvF
INJERT  FREEZE
MANTFUL

£ 1 ee

/ml

Exit: Return

IR Plume Representation

45




C. TEST-7 IR RESULTS:

Fuel:

Type: HTPB
Length: 12.06 inches
IR Camera Data:

Filter: None
Aperture: 2

Lprobe 48 inches
Environmental Conditions:
Toms? 524.9 °R
Po? 14.53 psia

Graph (Right): Temperatures (&,=1)
rom IR camera for 5 sequential
frames. Three "spot” functions

and one "area” function.
Towm ave (Eo=1): 1183°R

Frame (Below):

Length: 20 inches
Time (into burn): 4.23 sec
Toem max (E=1) 2 >1412°R

>21000 W/m?

Burn Status:

P,: 107

ty: 6.70 sec
¢: 1.18

Tec pluse® 1480°R

g, (Calc): 0.50

PIGURE A-6: TEST-7:
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D. TEST-9 IR RESULTS:

Fuel:

Type: HTPB
Length: 13.00 inches
IR Camera Data:

Filter: None
Aperture: 2

Lyrobe 48 inches
Environmental Conditions:

Toms® 521.7 °R
Pt 14.53 psia

Graph (Right): Temperatures (g =1)

rom IR camera for 5 sequential

frames. Three "spot” functions
and one "area" function.

Toan ave (Ec=1) 3 1187°rR
Frame (Below):

Length: 20 inches
Time (into burn): 5.88 sec
Toem max (Eo=1) >1412°R

>21000 W/m?

*
»ax *

Burn Status:

Pt 122 |
) 9.30 sec
$: 1.07
Teo plume? Unknown
g€, (Calc): Unknown

FIGURE A-8: TEST-9:
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E. TEST-12 IR RESULTS: %0

Fuel: 1 +:: ineh abeve

Type: HTPB ug - % Cemterlie ey
. 3 - ¥2 Inoh below

Length: 6.438 inches 1 ~a=Aren Avarags "

IR Camera Data: "o

Filter: None

Aperture: 0 E w

Lorobe ¢ 60 inches H

Environmental Conditions: w

Temb? 515.9 °R

P 14.71 psia " 100

Ggraph (Right): Temperatures (e,=1) ®

rom IR camera for 5 sequential

frames. Three "spot” functions

and one "area" function. o

Tean ave (Ec=1) 685°R

Frame (Below): w0

Length: 26 inches 7

Time (into burn): 6.74 sec o0

Toun mas (€o=1) 1 >805°R L AL B LAY BN DL B

Burn Status: Tine (see)

Pot 88.5 psia

to: 8.00 sec FIGURE A-9: TEST-12: Plume Temperature

Py 0.44 At 18.7 Nozzie Diameters From The Nozzle

Tec plume’ 895°R Exit (Based On An Emissivity=1)

Ty pluse’ 1070°R

£, (Calc): 0.17

2250 118112998 ‘
2@3?%11—?{?‘.’—19 17391:86
rien Test 12 !

EvE Hnl
[XUERT  FREEZE
MaN]PUL

Flee

Fxit: Feturn

FIGURE A-10: TEST-12: IR Plume Representation
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F. TEST-14 IR RESULTS:

Fuel:

Type: M-096 (No Mg)
Length: 6.50 inches
IR Camera Data:

Filter: None
Aperture: 1

Locobe® 60 inches
Environmental Conditions:

Toms® 521.0 °R

Pos? 14.73 psia

Graph (Right): Temperatures (&g,=l)

rom IR camera for 5 sequential
frames. Three "spot” functions
and one "area" function.

Teoam ave (Eo=1)2 821°R
Frame (Below):
Length: 26 inches
Time (into burn): 6.41 sec
Toum max (Eo=1): >1075°R
ax >7224 wW/m?
Burn Status:
Pyt 87 psia
to: 7.50 sec
¢: 0.54
Teo plume ® 900°R

¢ plume® 1200°R

g, (Calc): 0.22

Temporatwrs (C)

E & 8 3 8 8 8 3 8B 8 8

~+-¥2 Imeh above N R4
-« Contorfise N
~- 42 b balow 3
«a=~Area svinnp

L |
& 83 01 12 M s
Tiee (ses)

FIGURE A-1t TEST-M: Plame Tomperature
At 8.7 Nozze Diameters From The Nozzie
Exit (Based On An Emissivity=1)

5L EXP H/ml
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ANIPUL

FIGURE A-12: TEST-14: IR Plume Representation
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G. TEST-15 IR RESULTS:

Fuel:

Type: M-104
Length: 6.44 inches
IR Camera Data:

Filter: None
Aperture: 1

Ligrobe ¢ 60 inches
Environmental Conditions:

Toms? 521.0 °R
Pt 14.71 psia

Graph: The temperatures (¢ -1)
were all less than the minimum
for the IR camera.

Toen ave (Eo=1): <852°R
Frame (Below):
Length: 26 inches
Time (into burn): 4.00 sec
Toun max (Eo=1): >1130°R
Woux® >8759 W/m!
Burn Status:
Pyt Unknown
t,: Unknown
¢: Unknown
Teo m,. Unknown
'I‘g plume ? Unknown
€, (Calc) Unknown

NO GRAPH AVIABLE DUE TO ALL
TEMPERATURE BEING LESS THE
MINIMUM FOR THE IR CAMERA
SETTINGS.

o EYF[‘

acs | INUER]
4RETH wan UL
14|

FIGURE A-13: TEST-15: IR Plume Representation
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H. TRST-16 IR RESULTS:

Fuel:
Type:
Length:

IR Camera Data:

M-104
6.47 inches

Filter: None
Aperture: 1

Liprobe ¢ 60 inches
Environmental Conditions:

Toms? 521.0 °R
P! 14.56 psia
Graph (Right): Temperatures (e =1)
rom IR camera for 4 sequential
frames. Three "spot" functions
and one "area" function.

Toaxw ave (Eo*®1): 825°R
Frame (Below):
Length: 26 inches
Time (into burn): 5.00 sec
Toun max (Eo*1): >1129°R

pax t >8761 wW/m?
Burn Status:
Py: 102 psia
) A 6.35 sec
¢: 0.30
Teo plume 1005°R

¢ pluse 1430°R
£, (Calc): 0.14

FIGURE A-15: TEST-16:
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I. TEST-17 IR

Fuel:
Type:
Length:

IR Camera Data:

Filter:
Aperture:

Lprob. :

RESULTS:

M-105
6.50 inches

None
1
60 inches

Environmental Conditions:

T
Pow?

§24.9 °R
14.71 psia

Graph (Right): Temperatures (€,=1)
rom IR camera

frames. Three
and one "area"
TGII ave (eogl) :

Frame (Below):
Length:

Time (into burn):

Teum max (Eo=1)
ax

Burn Status:

)

te

¢:

Tu plunn:
t plu-o"

g, (Calc):

FIGURE A-17: TEST-17:

for 6 sequential
"gpot” functions
function.

1012°R

26 inches
6.67 sec
>>1091°R
>>7651 W/m?

105 psia
6.20 sec
0.33
1250°R
1550°R
0.39
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FIGURE A-18: TEST-17: Pume Temperature
At 16.7 Nozzie Diameters From The Nozzle
Exit (Based On An Emssivity=1)

IR Plume Representation '




Je. TEST-18 IR RESULTS:

Fuel:

Type: M-096 (No Mg)
Length: 13.06 inches
IR Camera Data:

Filter: None
Aperture: 2

Loprobe 60 inches
Environmental Conditions:

Tow: ____ 524.9 °R
Pu® 14.65 psia

Graph (Right): Temperatures (&,=1)
rom IR camera for 5 segquential

frames. Three "spot”™ functions
and one "area” function.

Tous ave (Ec®1): 1223°R

Frame (Below):

Length: 26 inches
Time (into burn): 2.57 sec

Poes max (Eo=1) 3 >1444°R

>23000 W/m?

.
max ¢

Burn Status:

| D) 120 psi.
t,: 6.35 sec
¢: 1.1150
Tec pluse® 1600°R

¢ plume® 2000°R
£, (Calc): 0.20

| ‘”\‘-. .‘.. ~g‘ "“‘-‘

FIGURE A-19: TEST-18:
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Time (s00)

FIGURE A-18: TEST-18. Plume Temperature
At 1.7 Nozzle Diameters From The Nozzle

Exit (Based On An Emissivity=1)
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IR Plume Representation




Fuel:

Type:
Length:

IR Camera Data:
Filter:
Aperture:

Liprope ®

TEST-19 IR RESULTS:

M-096
13.00 inches

None
2
60 inches

Environmental Conditions:

Tems®
Pt

Graph (Right):

521.7 °R
14.69 psia

Temperatures (£.=1)

from IR camera for 5 sequential

frames. Three "spot” functions
and one "area” function.

Tun- ave ‘Eo=1)= 1217°R

Frame (Below):

Length: 26 inches
Time (into burn): 5.54 sec

Teoem max (Ec=1) >>1412°R

Burn Status:
P,:

tos

¢:

Tu plume :

t plu-.=

€, (Calc):

>>21000 W/m?

107 psia
5.55 sec
1.31
1800°R
2160°R
0.16

FIGURE A-21: TEST-19:

=~ 12 Inch gbove
4 5 -%- Conterlineg

=+ V2 luch bolew
=S=Arez sbove

s ——

L D D LA L B
48 49 30 &1 52 s
Tioe (sec)

P

84 85 50

FIQURE A-20: TEST-M: Plume Temperature
At .7 Nozzie Diameters From The Nozzle
Exit (Based On An Emissivitye)

TEST19.872
9f-N-zd 14h2e 1t

| Lughreen: Test-19
M-8 '

Wl

BYP Wl
INVERT FREEZE
MANIPUL

El.ee

Exit: Return

IR Plume Representation
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L. TEST~20 IR RESULTS:

Fuel:

Type: M-104
Length: 12.94 inches
IR Camera Data:

Filter: Glass
Aperture: 1

Lprose 60 inches
Environmental Conditions:

T 530.0 °R

| S 16.14 psia

Graph (Right): Temperatures (g,=1)

from IR camera for 5 sequential

frames. Three "spot” functions
and one "area" function.

Team ave (Eo=1): 1028°R
Frame (Below):

Length: 26 inches
Time (into burn): 4.73 sec
Toen nax (Eo=1) 2 1619°R
Woeet 28000 W/m?
Burn Status:

Pt 173 psia
t,: 6.70 sec
¢: 0.70

T.c ,1\_ Unknown

t plume’ Unknown
£, (Calc) Unknown

FIGURE A-23: TEST-20:

4 —- V2 bheh abksve
-#- Contefling
380 - —~ V2 ok helew

“W=Ares SVOT8P0

Tempearature (C)

I LA ML LA NRRLA e
44 45 48 4T 44 a9 0 64

l T

FIGURE A-22: TEST-20:

At 8.7 Nozzle Dllmtor
Ext (Based On

o Fom SRS
z
An Emissivh hy=1)

TE5126.871
1 91-NOV-24 15:24:29

Luehrser: Test-2@
-184

EXP Hiud
INUERT FR[EZE
NIPUL

2 E1.40

NI

Re turn

IR Plume Representation
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M. TEST-21 IR RESULTS:

Fuel:

Type:
Length:

IR Camera Data:

M-105
13.00 inches

Filter: Glass
Aperture: 1

Lprobe 60 inches
Environmental Conditions:
Tt 524.6 °R
Pow? 16.12 psia

Graph (Right): Temperatures (&,=1.

from IR camera for 5 sequential

frames.

Three "spot” functions

and one "area" function.

TGI- ave (£°=1) :

Frame (Below):
Length:

Time (into burn):
Toam nax (E=1) 3
Waax®

Burn Status:
Py

ty?

¢:

th plume ¢

.
€t plume *

€, (Calc):

FIGURE A-25: TEST-21:

971°R

26 inches
5.21 sec
1450°R
32000 wW/m?

147 psia
6.30 sec
0.88
2100°R
2150°R
0.08
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FIGURE A-24: TEST-21: Piume Temperature
At 18,7 Nozzle Diameters From The Nozzle
Exit (Based On An Emissivity=1)
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IR Plume Representation




. TEST-22 IR RESULTS:

Fuel:

Type:
Length:

IR Camera Data:
Filter:
Aperture:

Liprove *

M~-106
13.07 inches

Glass
1
60 inches

Environmental Conditions:

Temt
Pt

524.6 °R
16.11 psia

Graph (Right): Temperatures (e.=1)

from IR camera for 5 sequential

frames. Three "spot” functions
and one "area” function.

Touwn ave (Eo=1) 818°R
Frame (Below):
Length: 26 inches
Time (into burn): 4.28 sec
Toem max (Eo®1)2 1372°R

max 22000 W/m’
Burn Status:

P, 137 psia
. 6.05 sec
¢: 1.41

Tro plume ! 1300°R

' plume’ 1800°R

£, (Calc): 0.04

FIGURE A-27: TEST-22:

Tonmperature {C)
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FIQURE A-28; TEST-22. Plume Temperatur.
At 8.7 Nozzle Diameters From Thop Nozzl:
Exit (Based On An Emissivity=1)

TEST22. @69
91-Nov-25 13:41: 36§
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| Range: 5@
Level: 25@.95
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Exp
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b 1.00
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IR Plume Representation




0. TEST~-23 IR RESULTS:

Fuel:

Type: M-103
Length: 12.88 inches
IR Camera Data:

Filter: Glass
Aperture: 1

Liprobe 60 inches
Environmental Conditions:

Tt - ~ 524.6 °R
P! 14.66 psia

Graph (Right): Temperatures (g =1)

rom IR camera for 5 sequential

frames. Three "spot" functions
and one "area”™ function.

Tows ave (Eo=1): 901°R
Frame (Below):

Length: 26 inches
Time (into burn): 3.58 sec
Tows sax (E,=1)2 1754°R

) 62000 W/m?
Burn Status:

P: 125 psia
ty: 5.80 sec
¢: 1.08

Tec plume’ 1080°R

t plume® 1260°R

€, (Calc): 0.28

FIGURE A-29: TEST-23:

-2 ineh adeve
80 % -a- CantarBne
i ~ 2 Ineh balew
o ] =@=Ares SVerage
\
220 Y
300
()
290
S W

lllllllllllljlllLlLllIll];
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il o r
s 38 40 44

FIGURE A-28: TEST-23: Piume Temperature
At 8.7 Nozzle Diameters From The Nozzle
Exkt (Based On An Emissivity=1)

TEST22.864

Parge: 509
Level: 258.5

B2 EXP H/ml
INVERT FREEZE
MANIPLL

-|E 1. @

Evit: Return

IR Plume Representation
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P. TesT-24 IR RESULTS?

~— {1 lach sheve

Fuel: 0 .- ?'l(lllh!
et M-105 - iach below
Length: 6.47 inches ®0 so-Arse averspd
IR Camera pata: fad
Filter: None 12
Aperture: 2 3 w
L s ¢0 inches

probe 0
Envitonmental conditions:
b I . - W
Pon® ST B S

- uo
Graph (Right): Temperatures (€20
from IR camera for 5 sequential e
frames. Three "spot” functions :
and one ~area" function. 20 R ;
T ave (Eo=1)E 791°R Pty \

1o L.
Frame pelow)?
Tength: 26 inches ©v
Time (into purn): 5,02 sec
Toan sax (€,=1)¢ 1309°R 44 48 42 a1 A3 g M 82
Woirt 17000 W/m’ Time (899)
Burp SLa=tt status: o1 psia FIGURE A-30; TEST-24: Piume Tompersturs
A 5.25 sec At 8.7 Nozzle Diameters From The Nozzle
;. : 0. 33 Exit (B!lbd On An Emissivity=1) i
Tec plume’ 870°R
2 1280°R

t plu-“
£, (calc): 0.07

15k 118124 875
{14 | 91-NouU-235 17:81:25
12V | Lehrsen: Test-24
9989 | H-185¢8)
8583
7184
4 e 502
9Q.9
4113
1976
2862
2281

Exp W/ m
[NyERD FREEZE
MANTFUL

g7 | 108

1382
1
(1179

FIGURE A-31: TEST~-24: IR plume Repre-entation
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